Isogeometric Fluid-Structure Interaction Analysis with Applications to Arterial Blood Flow

نویسندگان

  • Y. Bazilevs
  • V. M. Calo
  • Y. Zhang
چکیده

A NURBS (non-uniform rational B-splines)-based isogeometric fluid-structure interaction formulation, coupling incompressible fluids with nonlinear elastic solids, and allowing for large structural displacements, is developed. This methodology, encompassing a very general class of applications, is applied to problems of arterial blood flow modeling and simulation. In addition, a set of procedures enabling the construction of analysis-suitable NURBS geometries directly from patient-specific imaging data is outlined. The approach is compared with representative benchmark problems, yielding very good results. Computation of a patient-specific abdominal aorta is also performed, giving qualitative agreement with computations by other researchers using similar models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isogeometric analysis of blood flow: a NURBS-based approach

We describe a new approach for constructing patient-specific vascular geometries suitable for isogeometric fluid and fluid-structure interaction analysis of blood flow in arteries. We use solid NURBS (non-uniform rational B-splines) to define vascular geometries as well to perform analysis. It is argued in this paper that this new approach is a viable alternative to the finite element method, w...

متن کامل

Isogeometric Analysis for reduced Fluid-Structure Interaction models in Haemodynamic applications

Isogeometric analysis (IGA) is a computational methodology recently developed to numerically approximate Partial Differential Equation (PDEs). It is based on the isogeometric paradigm, for which the same basis functions used to represent the geometry are then used to approximate the unknown solution of the PDEs. In the case in which Non-Uniform Rational B-Splines (NURBS) are used as basis funct...

متن کامل

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

Impact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion

The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...

متن کامل

Presentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall

Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been  introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the  substitution  of  the  blood  pressure  changes  in  the  central  arteries  such  as  carotid  with  the  blood  pressure  changes in the brachial results in error in the blood...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006